

Week 10 Hypothesis Testing

HCI 연구방법론 2019 Fall

Human-Computer Interaction+Design Lab _ Joonhwan Lee

오늘 다룰 내용

- Hypothesis Testing
- Parametric Analysis
- Non-Parametric Analysis

Hypothesis Testing

What is Hypothesis Testing?

- The use of statistical procedures to answer research questions
- Typical research question (generic):
 - Is the time to complete a task less using Method A than using Method B?
- For hypothesis testing, research questions are statements:
 - There is no difference in the mean time to complete a task using Method A vs. Method B.
 - → *null hypothesis* (assumption of "no difference")
- Statistical procedures seek to reject or accept the null hypothesis

Statistical Procedures

- Two types:
 - Parametric
 - Data are assumed to come from a distribution, such as the normal distribution, *t*-distribution, etc.
 - Non-parametric
 - Data are not assumed to come from a distribution
- A reasonable basis for deciding on the most appropriate test is to match the type of test with the measurement scale of the data

Measurement Scales vs. Statistical Tests

- Parametric tests most appropriate for...
 - Ratio data, interval data
- Non-parametric tests most appropriate for...
 - Ordinal data, nominal data (although limited use for ratio and interval data)

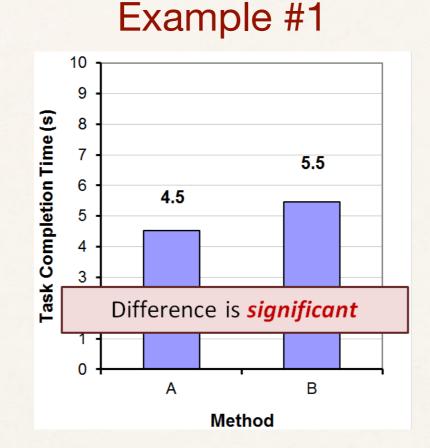
Measurement Scale	Defining Relations	Examples of Appropriate Statistics	Appropriate Statistical Tests	
Nominal	 Equivalence 	ModeFrequency	Non-parametric	
Ordinal	EquivalenceOrder	MedianPercentile	tests	
Inter∨al	 Equivalence Order Ratio of intervals 	 Mean Standard deviation 	• Parametric tests	
Ratio	 Equivalence Order Ratio of intervals Ratio of values 	 Geometric mean Coefficient of variation 	Non-parametric tests	

Tests Presented Here

Parametric

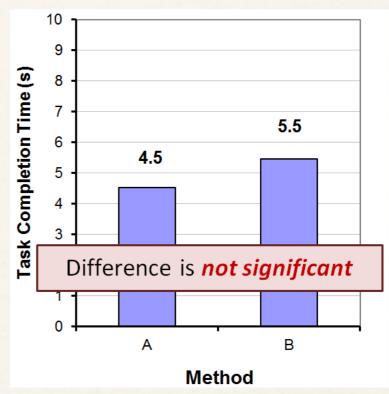
- Analysis of variance (ANOVA)
 - Used for ratio data and interval data
 - Most common statistical procedure in HCI research
- Non-parametric
 - Chi-square test
 - Used for nominal data
 - Mann-Whitney U, Wilcoxon Signed-Rank, Kruskal-Wallis, and Friedman tests
 - Used for ordinal data

Parametric Analysis

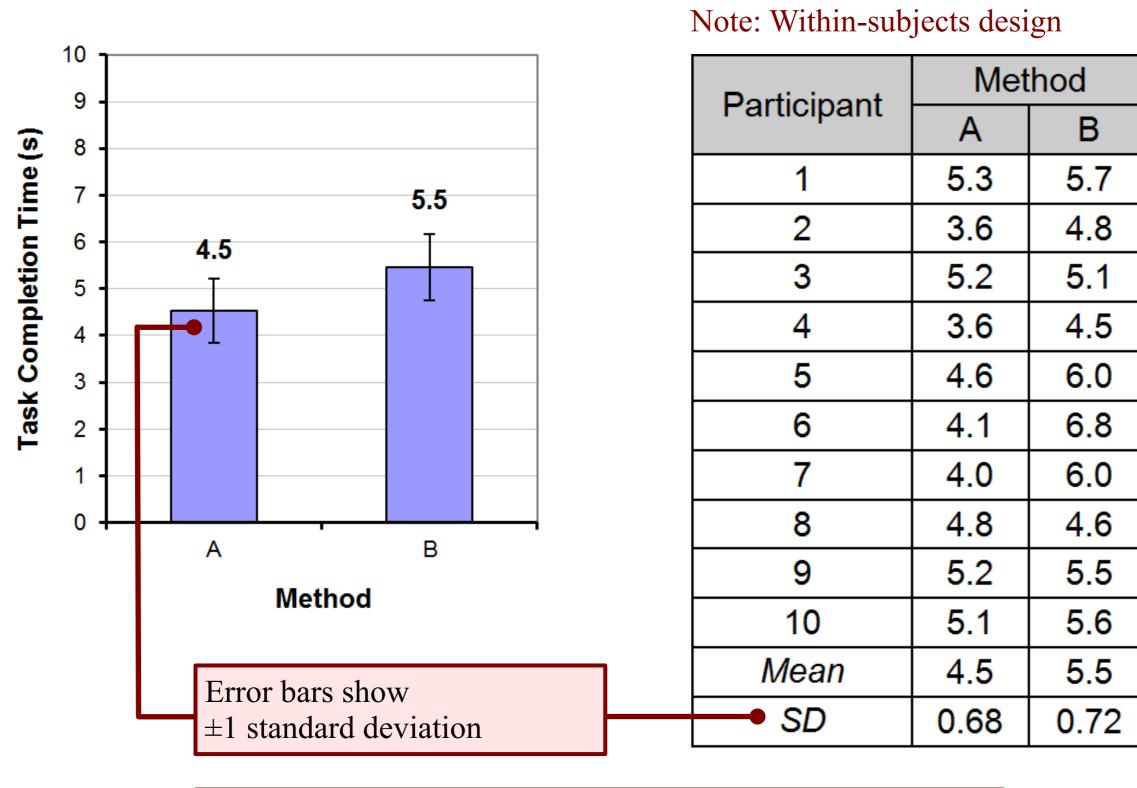

Analysis of Variance

- The analysis of variance (ANOVA) is the most widely used statistical test for hypothesis testing in factorial experiments
- Goal → determine if an independent variable has a significant effect on a dependent variable
- Remember, an independent variable has at least two levels (test conditions)
- Goal (put another way) → determine if the test conditions yield different outcomes on the dependent variable (e.g., one of the test conditions is faster/slower than the other)

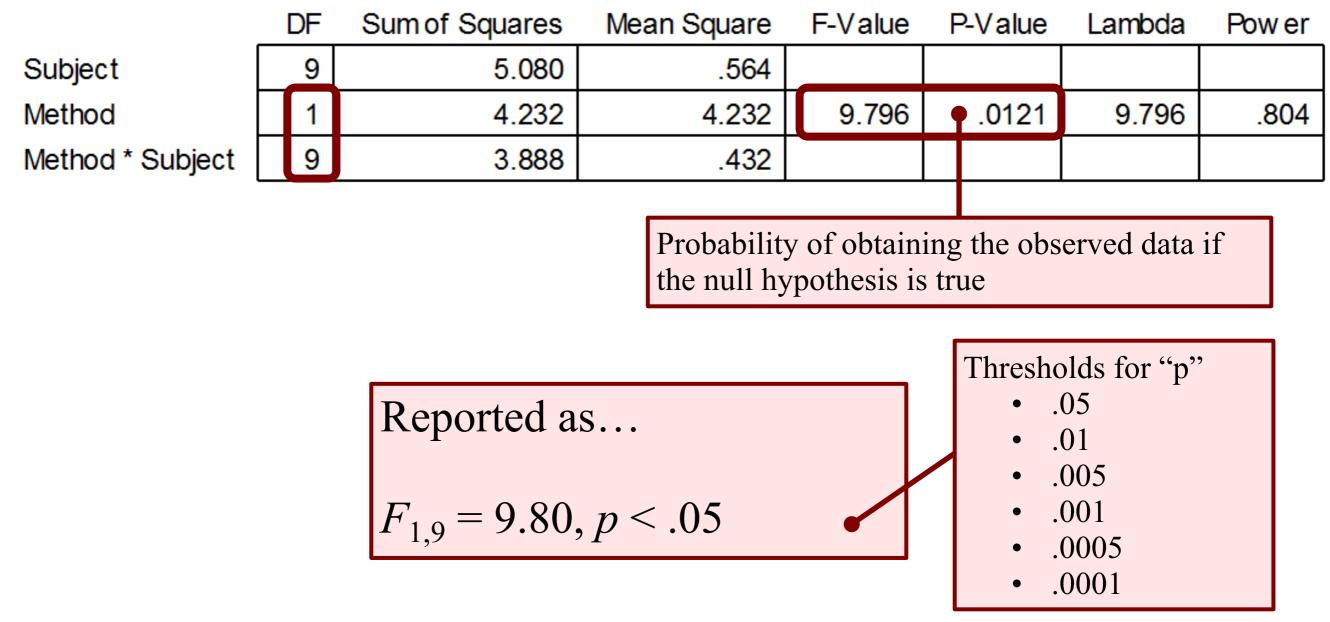
Why Analyze the Variance?


- Seems odd that we analyze the variance, but the research question is concerned with the overall means:
 - Is the time to complete a task less using Method A than using Method B?

Why Analyze the Variance? - Example


"Significant" implies that in all likelihood the difference observed is due to the test conditions (Method A vs. Method B).

"Not significant" implies that the difference observed is likely due to chance.


Example #1 - Details

Note: SD is the square root of the variance

Example #1 – ANOVA

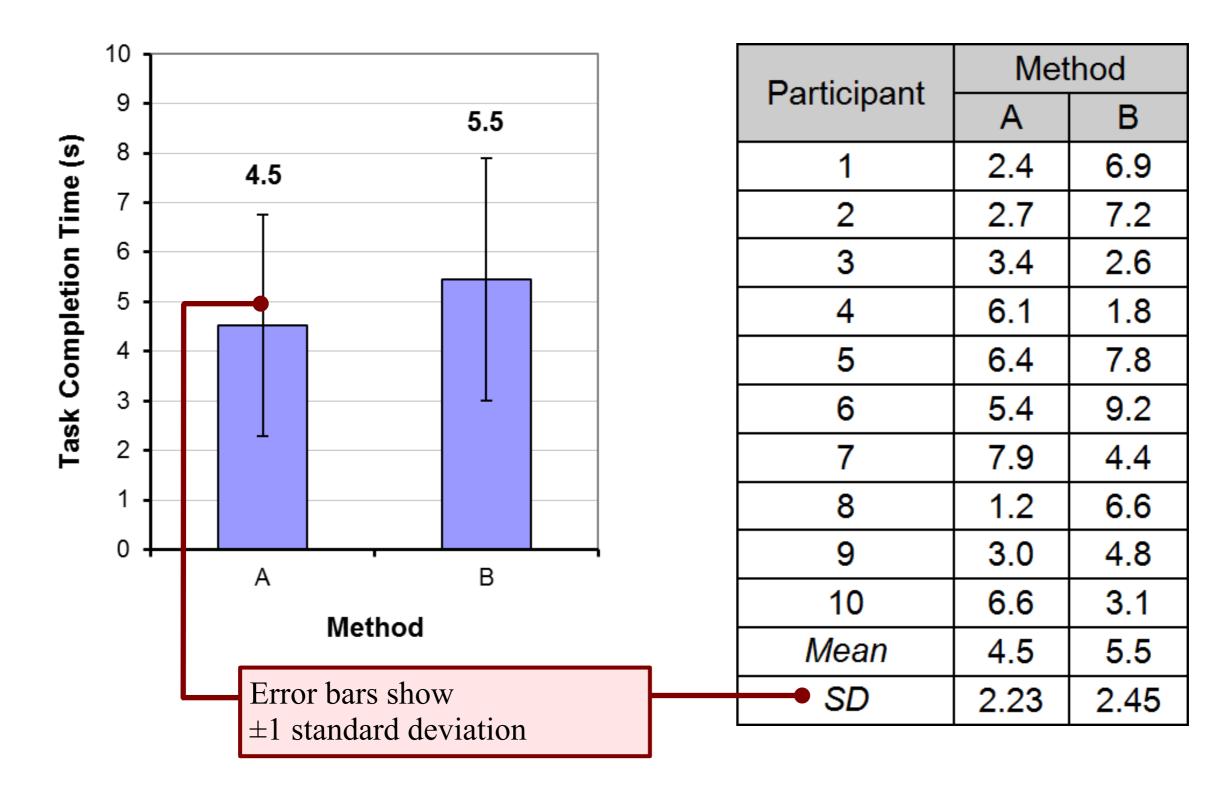
ANOVA Table for Task Completion Time (s)

Analysis in R (ex-01)

+ Code

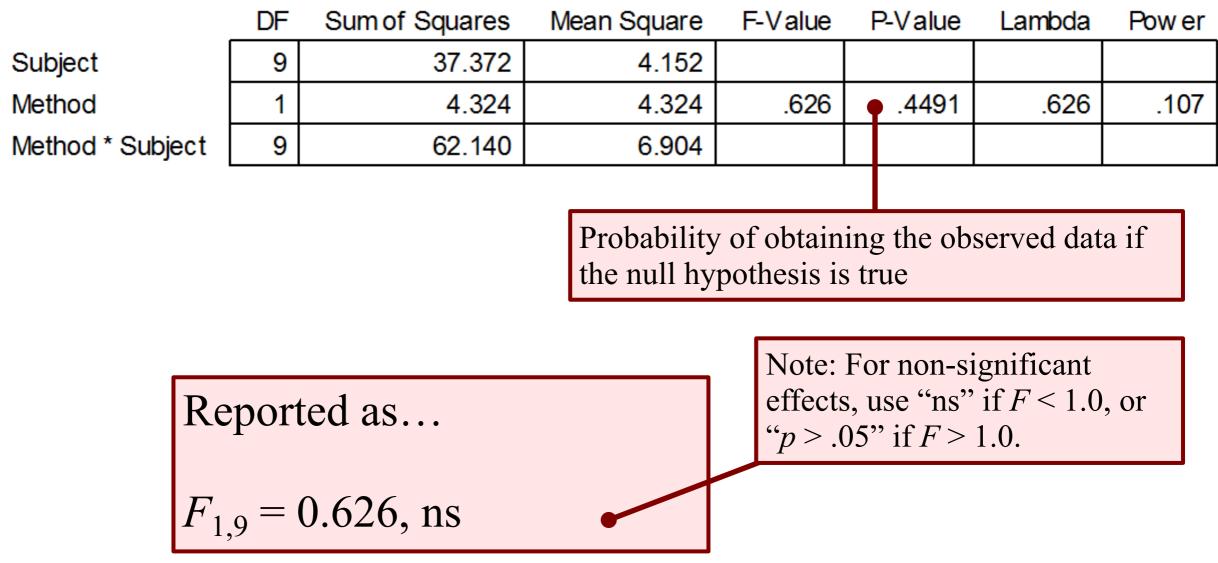
data1 <- read.csv("anova-ex-01.csv", header=T)
data1.fit <- aov(rt~method+Error(participant/
method), data=data1)
summary(data1.fit)</pre>

+ Result


Error: participant Df Sum Sq Mean Sq F value Pr(>F) Residuals 9 4.884 0.5427 Error: participant:method Df Sum Sq Mean Sq F value Pr(>F) method 1 4.141 4.141 9.593 0.0128 * Residuals 9 3.884 0.432

How to Report an F-statistic

The mean task completion time for Method A was 4.5 s. This was 20.1% less than the mean of 5.5 s observed for Method B. The difference was statistically significant ($F_{1,9} = 9.80$, p < .05).


- Notice in the parentheses
 - Uppercase for F
 - Lowercase for p
 - Italics for F and p
 - Space both sides of equal sign
 - Space after comma
 - Space on both sides of less-than sign
 - Degrees of freedom are subscript, plain, smaller font
 - Three significant figures for F statistic
 - No zero before the decimal point in the p statistic (except in Europe)

Example #2 - Details

Example #2 – ANOVA

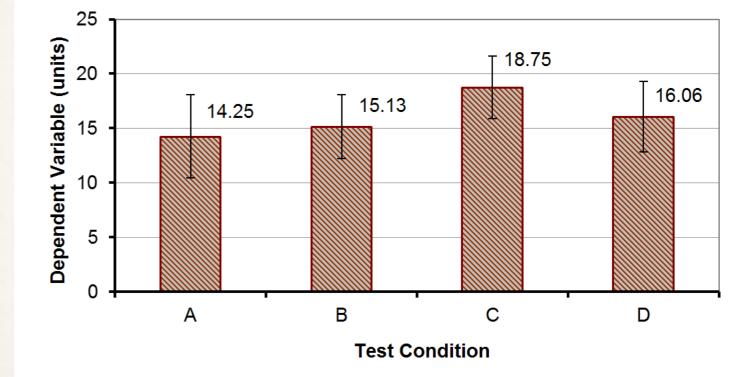
ANOVA Table for Task Completion Time (s)

Analysis in R (ex-02)

+ Code

data2 <- read.csv("anova-ex-02.csv", header=T)
data2.fit <- aov(rt~method+Error(participant/
method), data=data2)
summary(data2.fit)</pre>

+ Result


Error: participant Df Sum Sq Mean Sq F value Pr(>F) Residuals 9 37.37 4.152 Error: participant:method Df Sum Sq Mean Sq F value Pr(>F) method 1 4.32 4.325 0.626 0.449 Residuals 9 62.14 6.904

Example #2 - Reporting

The mean task completion times were 4.5 s for Method A and 5.5 s for Method B. As there was substantial variation in the observations across participants, the difference was not statistically significant as revealed in an analysis of variance $(F_{1,9} = 0.626, \text{ ns})$.

More Than Two Test Conditions

Dortioinant		Test C	ondition	
Participant	А	В	С	D
1	11	11	21	16
2	18	11	22	15
3	17	10	18	13
4	19	15	21	20
5	13	17	23	10
6	10	15	15	20
7	14	14	15	13
8	13	14	19	18
9	19	18	16	12
10	10	17	21	18
11	10	19	22	13
12	16	14	18	20
13	10	20	17	19
14	10	13	21	18
15	20	17	14	18
16	18	17	17	14
Mean	14.25	15.13	18.75	16.06
SD	3.84	2.94	2.89	3.23

ANOVA Table for Dependent Variable (units)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Subject	15	81.109	5.407				
Test Condition	3	182.172	60.724	4.954	.0047	14.862	.896
Test Condition * Subject	45	551.578	12.257				

- There was a significant effect of Test Condition on the dependent variable ($F_{3,45} = 4.95$, p < .005)
- Degrees of freedom
 - If <u>*n*</u> is the number of test conditions and <u>*m*</u> is the number of participants, the degrees of freedom are...
 - + Effect \rightarrow (*n* 1)
 - + Residual $\rightarrow (n-1)(m-1)$
 - Note: single-factor, within-subjects design

Analysis in R (ex-03)

+ Code

data3 <- read.csv("anova-ex-03.csv", header=T)
data3.fit <aov(unit~method+Error(participant/method),
data3)
summary(data3.fit)</pre>

Result

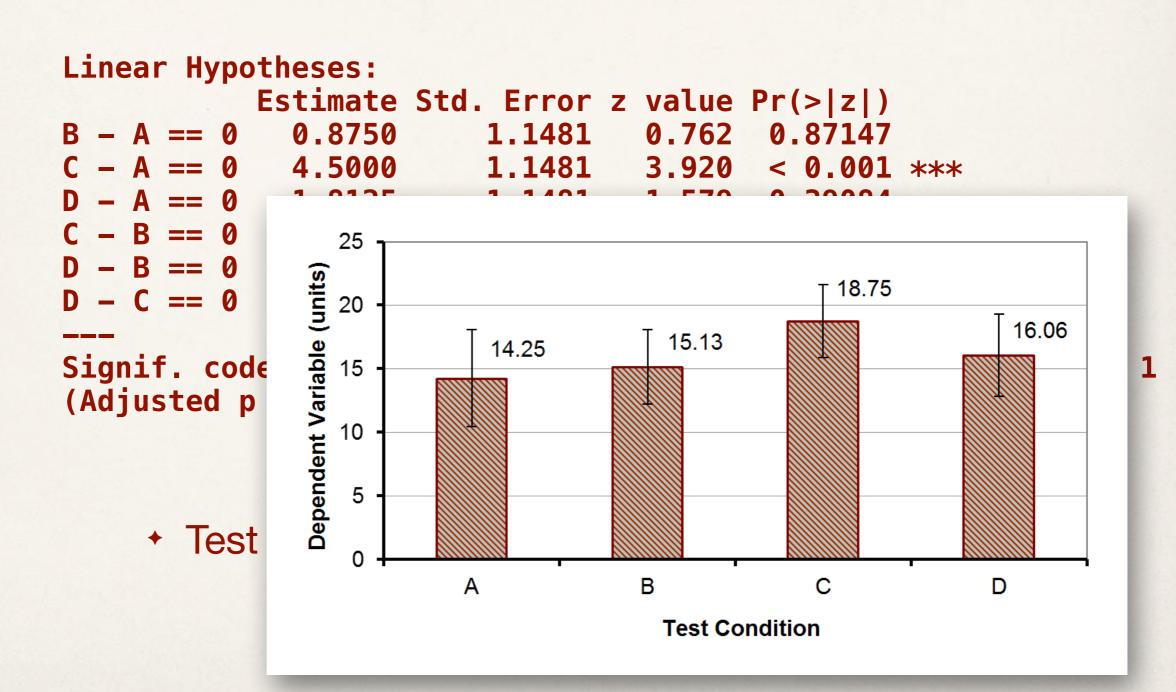
Error: participant Df Sum Sq Mean Sq F value Pr(>F) Residuals 15 81.11 5.407 Error: participant:method Df Sum Sq Mean Sq F value Pr(>F) method 3 182.2 60.72 4.954 0.00468 ** Residuals 45 551.6 12.26

Post-hoc Comparisons Tests

- A significant *F*-test means that at least one of the test conditions differed significantly from one other test condition
- Does not indicate which test conditions differed significantly from one another
- To determine which pairs differ significantly, a post hoc comparisons tests is used
- Examples:
 - Fisher PLSD, Bonferroni/Dunn, Dunnett, Tukey/Kramer, Games/Howell, Student-Newman-Keuls, orthogonal contrasts, Scheffé

Analysis in R (ex-03-post hoc)

```
* Code (within case is complicated)
  require(nlme)
  data3.fit.lme <- lme(unit ~ method,
  data=data3, random = ~1|participant)
  anova(data3.fit.lme)
  summary(glht(data3.fit.lme,linfct=mcp(method="
  Tukey")))</pre>
```

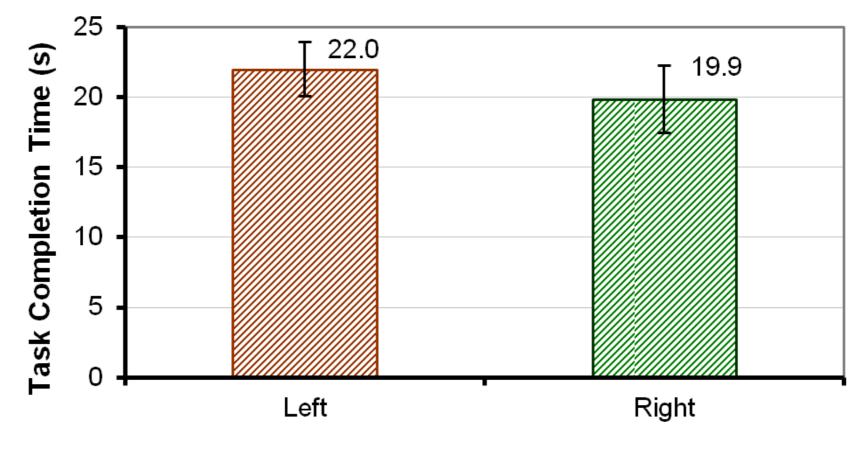

+ in case of between group
TukeyHSD(data3.fit)

Tukey Post Hoc Comparison

```
Linear Hypotheses:
          Estimate Std. Error z value Pr(>|z|)
B - A == 0 0.8750
                      1.1481 0.762 0.87147
C - A == 0 4.5000
                      1.1481 3.920 < 0.001 ***
D - A == 0 1.8125
                      1.1481 1.579 0.39084
C - B == 0 3.6250
                      1.1481 3.157 0.00852 **
D - B == 0 \quad 0.9375
                      1.1481 0.817 0.84668
D - C == 0 -2.6875
                      1.1481 - 2.341 0.08890.
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
```

Test conditions A:C and B:C differ significantly

Tukey Post Hoc Comparison



Between-subjects Designs

- Research question:
 - Do left-handed users and right-handed users differ in the time to complete an interaction task?
- The independent variable (handedness) must be assigned betweensubjects

Participant	Task Completion Time (s)	Handedness
1	23	L
2	19	L
3	22	L
4	21	L
5	23	L
6	20	L
7	25	L
8	23	L
9	17	R
10	19	R
11	16	R
12	21	R
13	23	R
14	20	R
15	22	R
16	21	R
Mean	20.9	
SD	2.38	

Summary Data and Chart

Handedness

	Task Completion Time (s)				
Handedness					
	Mean	SD			
Left	22.0	1.93			
Right	19.9	2.42			

ANOVA Table for Task Completion Time (s)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Handedness	1	18.063	18.063	3.781	.0722	3.781	.429
Residual	14	66.875	4.777				

• The difference was not statistically significant $(F_{1,14} = 3.78, p > .05)$

- Degrees of freedom:
 - + Effect \rightarrow (*n* 1)
 - + Residual $\rightarrow (m n)$
 - Note: single-factor, between-subjects design

Analysis in R (ex-04)

+ Code

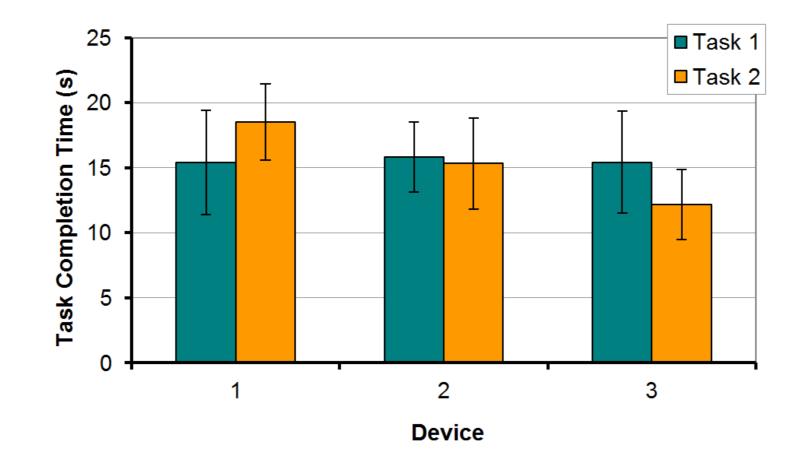
data4 <- read.csv("anova-ex-04.csv", header=T)
data4.fit <- aov(comp~handedness, data4)
summary(data4.fit)</pre>

+ Result

Df Sum Sq Mean Sq F value Pr(>F) handedness **1** 18.06 18.063 **3.781 0.0722**. Residuals **14** 66.88 4.777

Signif. codes: 0 '***' 0.001 '**' 0.01 '*'
0.05 '.' 0.1 ' ' 1

Two-way ANOVA


- An experiment with two independent variables is a two-way design
- ANOVA tests for
 - Two main effects + one interaction effect
- + Example
 - Independent variables
 - Device → D1, D2, D3 (e.g., mouse, stylus, touchpad)
 - + Task \rightarrow T1, T2 (e.g., point-select, drag-select)
 - Dependent variable
 - Task completion time (or something, this isn't important here)
 - + Both IVs assigned within-subjects
 - + Participants: 12

Data Set

Darticipant	Device 1		Device 2		Device 3	
Participant	Task 1	Task 2	Task 1	Task 2	Task 1	Task 2
1	11	18	15	13	20	14
2	10	14	17	15	11	13
3	10	23	13	20	20	16
4	18	18	11	12	11	10
5	20	21	19	14	19	8
6	14	21	20	11	17	13
7	14	16	15	20	16	12
8	20	21	18	20	14	12
9	14	15	13	17	16	14
10	20	15	18	10	11	16
11	14	20	15	16	10	9
12	20	20	16	16	20	9
Mean	15.4	18.5	15.8	15.3	15.4	12.2
SD	4.01	2.94	2.69	3.50	3.92	2.69

hci+d lab.

Summary Data and Chart

	Task 1	Task 2	Mean
Device 1	15.4	18.5	17.0
Device 2	15.8	15.3	15.6
Device 3	15.4	12.2	13.8
Mean	15.6	15.3	15.4

hci+d lab.

32

ANOVA & Reporting

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Subject	11	134.778	12.253				
Device	2	121.028	60.514	5.865	.0091	11.731	. <mark>8</mark> 31
Device * Subject	22	226.972	10.317				
Task	1	.889	.889	.076	.7875	.076	.057
Task * Subject	11	128.111	11.646				
Device * Task	2	121.028	60.514	5.435	.0121	10.869	.798
Device * Task * Subject	22	244.972	11.135				

ANOVA Table for Task Completion Time (s)

The grand mean for task completion time was 15.4 seconds. Device 3 was the fastest at 13.8 seconds, while device 1 was the slowest at 17.0 seconds. The main effect of device on task completion time was statistically significant ($F_{2,22} = 5.865$, p < .01). The task effect was modest, however. Task completion time was 15.6 seconds for task 1. Task 2 was slightly faster at 15.3 seconds; however, the difference was not statistically significant ($F_{1,11} = 0.076$, ns). The results by device and task are shown in Figure x. There was a significant Device × Task interaction effect ($F_{2,22} = 5.435$, p < .05), which was due solely to the difference between device 1 task 2 and device 3 task 2, as determined by a Scheffé post hoc analysis.

Analysis in R (ex-05)

+ Code

data5 <- read.csv("anova-ex-05.csv", header=T)
data5\$device <- as.factor(data5\$device)
data5\$task <- as.factor(data5\$task)
data5.fit <- aov(comp ~ device * task +
Error(participant/(device * task)), data5)
summary(data5.fit)</pre>

Analysis in R (ex-05)

* Result

Error: participant

Df Sum Sq Mean Sq F value Pr(>F) Residuals 11 134.8 12.25

Error: participant:device Df Sum Sq Mean Sq F value Pr(>F) device 2 121 60.51 5.865 0.00909 ** Residuals 22 227 10.32

Signif. codes: 0 '***' 0.001 '**' 0.01 '*'
0.05 '.' 0.1 ' ' 1

Analysis in R (ex-05)

Result (cont.)
 Error: participant:task
 Df Sum Sq Mean Sq F value Pr(>F)
 task 1 0.89 0.889 0.076 0.787
 Residuals 11 128.11 11.646

Error: participant:device:task Df Sum Sq Mean Sq F value Pr(>F) device:task 2 121 60.51 5.435 0.0121 * Residuals 22 245 11.14

Signif. codes: 0 '***' 0.001 '**' 0.01 '*'
0.05 '.' 0.1 ' ' 1

Non-Parametric Analysis

Chi-square Test (Nominal Data)

- A chi-square test is used to investigate relationships
- Relationships between categorical, or nominalscale, variables representing attributes of people, interaction techniques, systems, etc.
- Data organized in a contingency table cross tabulation containing counts (frequency data) for number of observations in each category
- A chi-square test compares the observed values against expected values
- Expected values assume "no difference"
- Research question:
 - Do males and females differ in their method of scrolling on desktop systems?

Chi-square – Example

Obs	bserved Number of Users					
Condor	Scro	Tatal				
Gender	MW	CD	KB	Total		
Male	28	15	13	56		
Female	21	9	15	45		
Total	49	24	28	101		

MW = mouse wheel CD = clicking, dragging KB = keyboard

Chi-square – Example

Expected Number of Users					
Condor	Scrolling Method				
Gender	MW	Total			
Male	27.2	13.3	15.5	56.0	
Female	21.8	10.7	12.5	45.0	
Total	49.0	101			

Chi Squares					
Gender	Scrolling Method				
Gender	MW	Total			
Male	0.025	0.215	0.411	0.651	
Female	0.032	0.268	0.511	0.811	
Total	0.057	0.483	0.922	1.462	

Significant if it exceeds critical value

 $\chi^2 = 1.462$

Chi-square Critical Values

- + Decide in advance on *alpha* (typically .05)
- Degrees of freedom
 - + df = (r-1)(c-1) = (2-1)(3-1) = 2

r = number of rows, *c* = number of columns

Significance Degrees				egrees o	of Freedo	om		
Threshold (a)	1	2	3	4	5	6	7	8
.1	2.71	4.61	6.25	7.78	9.24	10.65	12.02	13.36
.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51
.01	6.64	9.21	11.35	13.28	15.09	16.81	18.48	20.09
.001	10.83	13.82	16.27	18.47	20.52	22.46	24.32	26.13

Chi-square Critical Values

- + Decide in advance on *alpha* (typically .05)
- Degrees of freedom
 - + df = (r-1)(c-1) = (2-1)(3-1) = 2

r = number of rows, *c* = number of columns

Significance			D	egrees o	of Freedo	om		
Threshold (a)	1	2	3	4	5	6	7	8
.1	2.71	4.61	6.25	7.78	9.24	10.65	12.02	13.36
.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51
.01	6.64	9.21	11.35	13.28	15.09	16.81	18.48	20.09
.001	10.83	13.82	16.27	18.47	20.52	22.46	24.32	26.13

 $\chi^2 = 1.462 \ (< 5.99 \ \therefore \text{not significant})$

Analysis in R (chi-square #1)

+ Code

male <- c(28, 15, 13)
female <- c(21, 9, 15)
data.chi1 <- rbind(male, female)
colnames(data.chi1) <- c("mw", "cd", "kb")
chisq.test(data.chi1)</pre>

Result

Pearson's Chi-squared test
data: data.chi1
X-squared = 1.4622, df = 2, p-value = 0.4814

Chi-square – Example #2

Research question:

 Do students, professors, and parents differ in their responses to the question: Students should be allowed to use mobile phones during classroom lectures?

+ Data:

Observed Number of People					
Oninion	Category			Total	
Opinion	Student	TOLAI			
Agree	10	12	98	120	
Disagree	30	48	102	180	
Total	40	60	200	300	

Analysis in R (chi-square #2)

+ Code

agree <- c(10, 12, 98)
disagree <- c(30, 48, 102)
data.chi2 <- rbind(agree, disagree)
colnames(data.chi2) <- c("student",
"professor", "parent")
chisq.test(data.chi2)</pre>

+ Result

Pearson's Chi-squared test data: data.chi2 X-squared = **20.5**, df = 2, p-value = **3.536e-05**

+ Result: significant difference in responses ($\chi^2 = 20.5, p < .0001$)

Non-parametric Tests for Ordinal Data

- Non-parametric tests used most commonly on ordinal data (ranks)
- Type of test depends on
 - + Number of conditions \rightarrow 2 or 3+
 - Design → between-subjects or within-subjects

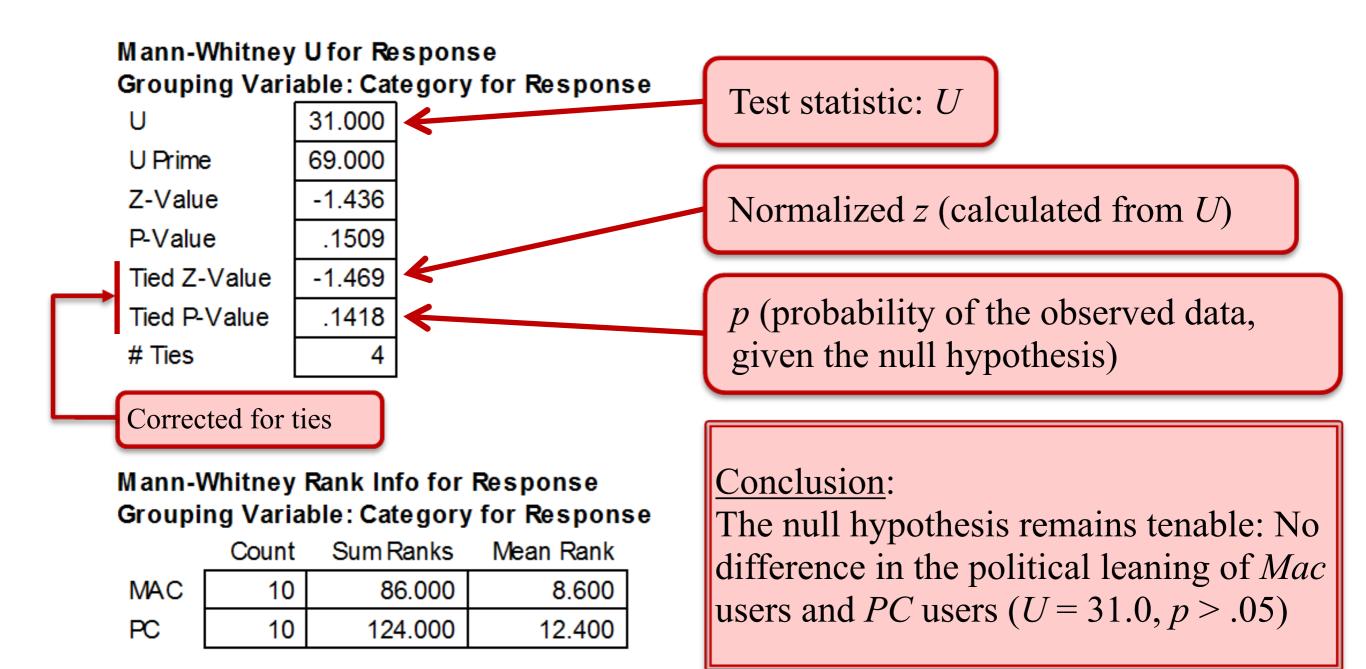
Decign	Conditions		
Design	2	3 or more	
Between-subjects (independent samples)	Mann-Whitney U	Kruskal-Wallis	
Within-subjects (correlated samples)	Wilcoxon Signed-Rank	Friedman	

Non-parametric – Example #1

- Research question:
 - Is there a difference in the political leaning of Mac users and PC users?
- Method:
 - 10 Mac users and 10 PC users randomly selected and interviewed
 - Participants assessed on a 10-point linear scale for political leaning
 - + 1 = very left
 - + 10 = very right

Data (Example #1)

- Means:
 - + 3.7 (Mac users)
 - + 4.5 (PC users)
- Data suggest PC users more right-leaning, but is the difference statistically significant?
- Data are ordinal (at least), ∴ a non-parametric test is used
- Which test? (see below)


Dosign	Conditions			
Design	2	3 or more		
Between-subjects (independent samples)	Mann-Whitney U	Kruskal-Wallis		
Within-subjects (correlated samples)	Wilcoxon Signed-Rank	Friedman		

Mac Users	PC Users
2	4
3	6
2	5
4	4
9	8
2	3
5	4
3	2
4	4
3	5

3.7

4.5

Mann Whitney U Test

Analysis in R (Mann Whitney U Test)

+ Code

data.mann <- read.csv("nonpara-ex-01.csv", header=T) wilcox.test(data.mann\$result ~ data.mann\$machine, exact=F)

Result

Wilcoxon rank sum test with continuity correction

data: data.mann\$result by data.mann\$machine

W = 31, p-value = 0.1526

alternative hypothesis: true location shift is not equal to 0

Non-parametric – Example #2

- Research question:
 - Do two new designs for media players differ in "cool appeal" for young users?
- Method:
 - 10 young tech-savvy participants recruited and given demos of the two media players (MPA, MPB)
 - Participants asked to rate the media players for "cool appeal" on a 10-point linear scale
 - + 1 = not cool at all
 - + 10 = really cool

Data (Example #2)

- Means
 - + 6.4 (MPA)
 - + 3.7 (MPB)
- Data suggest MPA has more "cool appeal", but is the difference statistically significant?
- Data are ordinal (at least), ∴ a non-parametric test is used
- Which test? (see below)

Participant	MPA	MPB
1	3	3
2	6	6
3	4	3
4	10	3
5	6	5
6	5	6
7	9	2
8	7	4
9	6	2
10	8	3

6.4 3.7

Design	Conditions			
Design	2	3 or more		
Between-subjects (independent samples)	Mann-Whitney U	Kruskal-Wallis		
Within-subjects (correlated samples)	Wilcoxon Signed-Rank	Friedman		

Wilcoxon Signed-Rank Test

Wilcoxon Signed Rank Test for MPA, MPB #0 Differences 2 Test statistic: Normalized z score # Ties -2.240 Z-Value .0251 P-Value p (probability of the observed data, -2.254 Tied Z-Value given the null hypothesis) Tied P-Value .0242 Conclusion: The null hypothesis is rejected: Media Wilcoxon Rank Info for MPA, MPB player A has more "cool appeal" than Sum Ranks Mean Rank Count media player B #Ranks < 0 2.000 2.000 (z = -2.254, p < .05).4.857 7 34.000 # Ranks > 0

Analysis in R (Wilcoxon Signed-Rank Test)

+ Code

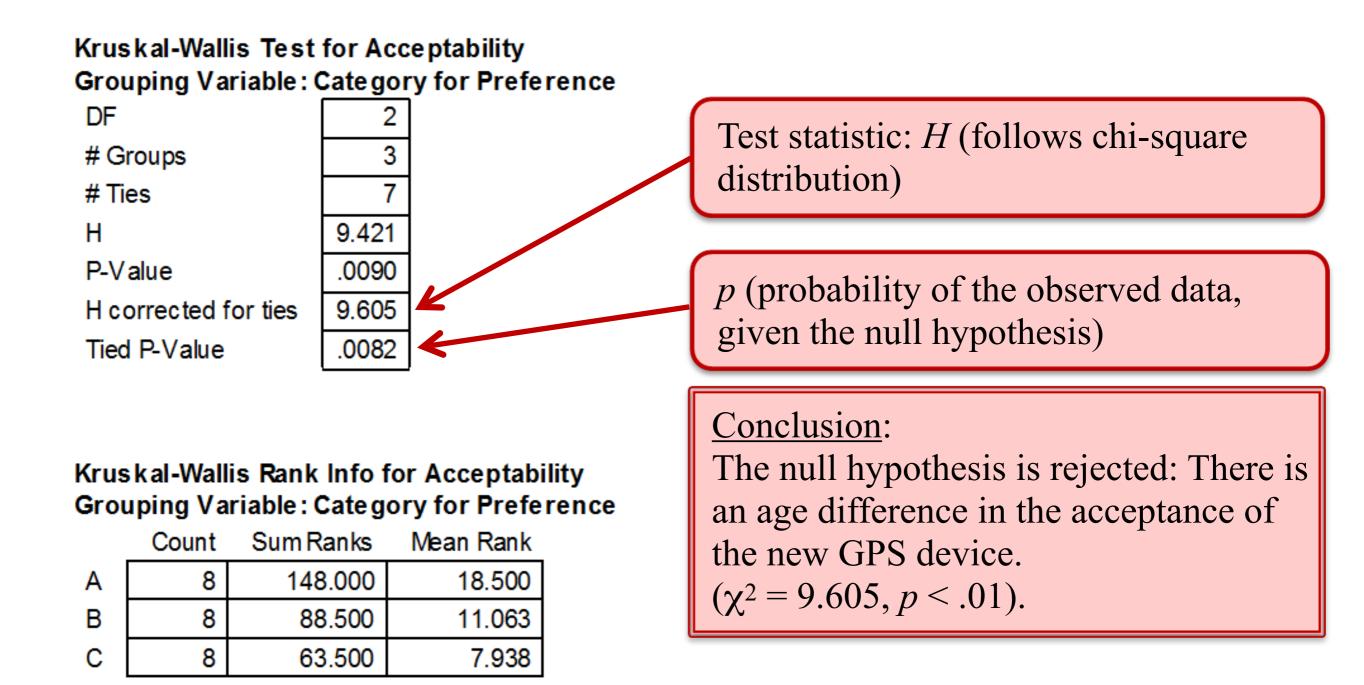
```
data.wilcox <- read.csv("nonpara-ex-02.csv",
header=T)
test <- wilcox.test(data.wilcox$score.a,
data.wilcox$score.b, mu=0, alt="two.sided",
paired=T, exact=F, correct=F)
z <- qnorm(test$p.value/2)
print(test)
print(z)
```

Result

Wilcoxon signed rank test data: data.wilcox\$score.a and data.wilcox\$score.b V = 34, p-value = 0.02418 alternative hypothesis: true location shift is not equal to 0 z = -2.254304

Non-parametric – Example #3

- Research question:
 - Is age a factor in the acceptance of a new GPS device for automobiles?
- Method
 - 8 participants recruited from each of three age categories: 20-29, 30-39, 40-49
 - Participants demo'd the new GPS device and then asked if they would consider purchasing it for personal use
 - They respond on a 10-point linear scale
 - 1 = definitely no
 - 10 = definitely yes


Data (Example #3)

- Means
 - + 7.1 (20-29)
 - + 4.0 (30-39)
 - + 2.9 (40-49)
- Data suggest differences by age, but are differences statistically significant?
- Data are ordinal (at least), ∴ a non-parametric is used
- Which test? (see below)

Docian	Conditions		
Design	2	3 or more	
Between-subjects (independent samples)	Mann-Whitney U	Kruskal-Wallis	
Within-subjects (correlated samples)	Wilcoxon Signed-Rank	Friedman	

A20-29	A30-39	A40-49
9	7	4
9	3	5
4	5	5
9	3	2
6	2	2
3	1	1
8	4	2
9	7	2
7.1	4.0	2.9

Kruskal-Wallis Test

Analysis in R (Kruskal-Wallis Test)

+ Code

data.kru <- read.csv("nonpara-ex-03.csv", header=T)

kruskal.test(score ~ group, data = data.kru)

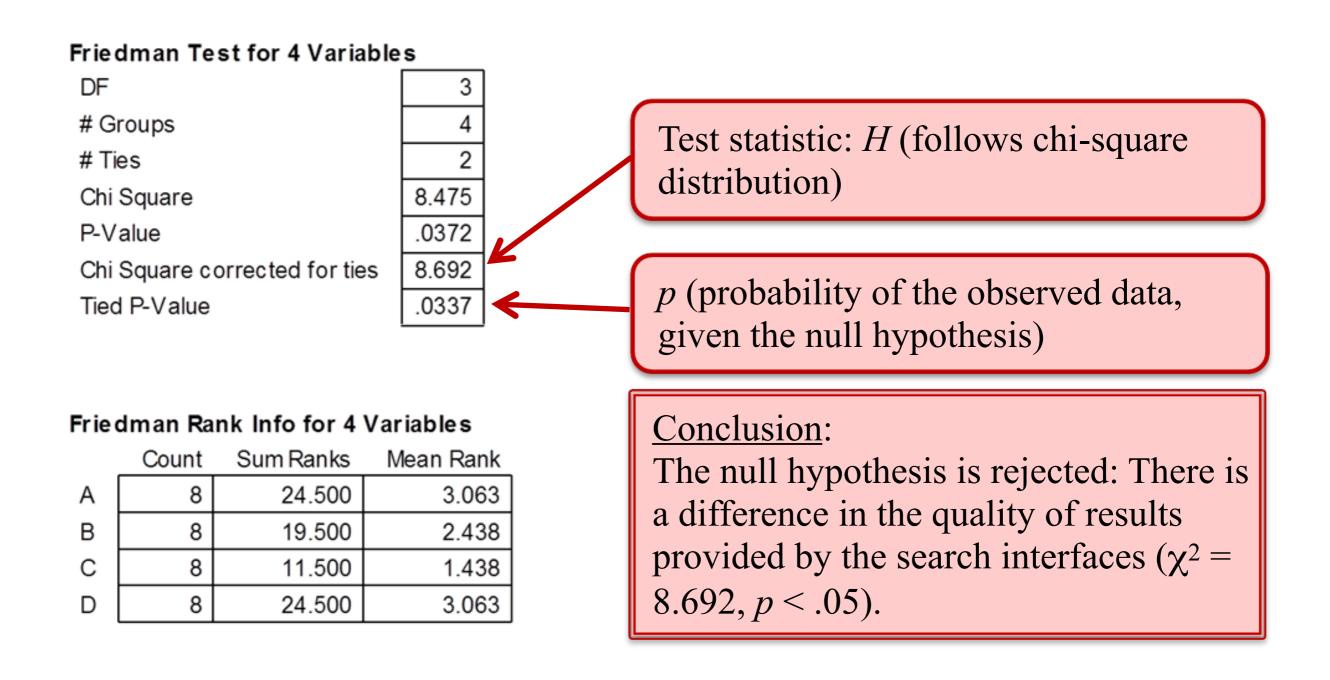
Result

Kruskal-Wallis rank sum test
data: score by group
Kruskal-Wallis chi-squared = 9.605, df = 2, pvalue = 0.008209

Non-parametric – Example #4

- Research question:
 - Do four variations of a search engine interface (A, B, C,
 D) differ in "quality of results"?
- Method
 - 8 participants recruited and demo'd the four interfaces
 - Participants do a series of search tasks on the four search interfaces (Note: counterbalancing is used, but this isn't important here)
 - Quality of results for each search interface assessed on a linear scale from 1 to 100
 - + 1 = very poor quality of results
 - + 100 = very good quality of results

Data (Example #4)


- Means
 - 71.0 (A), 68.1 (B), 60.9 (C),
 69.8 (D)
- Data suggest a difference in quality of results, but are the differences statistically significant?
- Data are ordinal (at least), ∴ a non-parametric test is used
- + Which test? (see below)

Participant	А	В	С	D
1	66	80	67	73
2	79	64	61	66
3	67	58	61	67
4	71	73	54	75
5	72	66	59	78
6	68	67	57	69
7	71	68	59	64
8	74	69	69	66

71.0 68.1 60.9 69.8

Design	Conditions					
Design	2	3 or more				
Between-subjects (independent samples)	Mann-Whitney U	Kruskal-Wallis				
Within-subjects (correlated samples)	Wilcoxon Signed-Rank	Friedman				

Friedman Test

Analysis in R (Friedman Test)

+ Code

data.fr <- read.csv("nonpara-ex-04.csv", header=T)

friedman.test(result ~ interface|participant,
data.fr)

Result

Friedman rank sum test
data: result and interface and participant
Friedman chi-squared = 8.6923, df = 3, p-value
= 0.03367

Next Week: Reading Assignments

- T2: Human-Computer Interaction
 - T2: Chapter 7 Modeling Interaction
- Card, S.K., Mackinlay, J.D., & Shneiderman, B. (1999). Information Visualization. Chapter 1 of Readings in Information Visualization. Morgan-Kaufmann, p. 1-34.
- Van Wijk, J.J. (2005). The value of visualization.
 Proceedings of IEEE Visualization, 79-86.

Questions...?