

Week 04

Interaction Elements

HCI 연구방법론 2019 Fall

Human-Computer Interaction+Design Lab _ Joonhwan Lee

오늘 다룰 내용

• Interaction Elements

Interaction Elements

Interaction

- Interaction occurs when a human performs a task using computing technology
- + Interaction tasks with a goal:
 - Send an e-mail
 - + Burn a CD
 - Program a thermostat
 - + Enter a destination in a GPS device
- + Interaction tasks without a goal:
 - Browse the web
 - Chat with friends on a social networking site

Interaction Elements

- Can be studied at many levels and in different contexts
- The tasks are in the cognitive band of Newell's <u>time scale of human action</u>
- Tasks in this range are well suited to empirical research
- Experimental methodology preferred (extraneous behaviours easy to control)
- Early human factors research on "knobs and dials" is relevant today

Interaction Elements

Newell's time scale of human action

Scale (sec)	Time Units	System	World (theory)
10 ⁷	Months		
10 ⁶	Weeks		SOCIAL
10 ⁵	Days		DAILD
10 ⁴	Hours	Task	
10 ³	10 min	Task	RATIONAL BAND
10 ²	Minutes	Task	DAND
10 ¹	10 sec	Unit task	
10 ⁰	1 sec	Operations	BAND
10 ⁻¹	100 ms	Deliberate act	DAILD
10 ⁻²	10 ms	Neural circuit	
10 ⁻³	1 ms	Neuron	BIOLOGICAL
10 ⁻⁴	100 µs	Organelle	

Human Factors Model

Hard Controls, Soft Controls

- In the past, controls were physical, single-purpose devices → hard controls
- + Today's graphical displays are malleable
- Interfaces created in software → soft controls
- + Soft controls rendered on a display
- Distinction blurred between soft controls and displays
- + Consider controls to format *this* (see below)

Scrollbar Slider

- Example of a soft control (control + display)
- As a control
 - Moved to change view in document
- + As a display
 - Size reveals view size relative to entire document
 - Position reveals view location in document

GUI Malleability

- + Below is a 30cm² view into a GUI
 - more than 20 soft controls (or are they displays?)

 Click a button and this space is morphed into a completely different set of soft controls/displays

Control-Display Relationships

- Also called mappings
- Relationship between operation of a control and the effect created on a display
- + At least three types:
 - Spatial relationships
 - Dynamic relationships
 - Physical relationships

Spatial Relationships

Spatial congruence Control: right Display: right

Spatial transformation Control: forward Display: up

		Point & Click	Scroll & Zoom	More Gestures	
K	Scroll direction: na Content tracks finger	atural r movement	Salar To	Edt View History Bookmarks Window Help Architecture INTERIORS CURIOSITY JOSS COMPETITIONS INTERIORS CURIOSITY JOSS COMPETITIONS	
	Zoom in or out Pinch with two finger	s	DE	SIGN	
V	Smart zoom Double-tap with two	fingers		Rolling with Gilad Tel Aviv artist turned desi international recognition in material, form and function By Kinterne Birks 4 days ngo Prospany by Deve Telasman Tage: Pursbure, Lighteng	pper Ron Gilad is gaining for his playful twists on a. LATEST UPDATES COMPETITIONS EVENTS SALES
V	Rotate Rotate with two finge	ers	comr		S 📝 🏜 👕 🧭 💭 🌑 Command Coption
				9	
	Natural Scrolling	9			

?

Axis Labeling

Third Tier

hci+d lab.

3D

- + In 3D there are 6 degrees of freedom (DOF)
 - + 3 DOF for position (x, y, z)
 - 3 DOF for orientation (θx, θy, θx)

Joysticks & RC Transmitters

3D in Interactive Systems

- + Usually a subset of the 6 DOF are supported
- Spatial transformations are present and must be learned
 - + E.g., Google StreetView

Spatial Congruence in 3D

Control-Display Gain

- Quantifies the amount of display movement for a given amount of controller movement
 - E.g., CD gain = 2 implies 2 cm of controller movement yields 4 cm of display movement
- + Sometimes specified as a ratio (C:D ratio)
- For non-linear gains, the term transfer function is used
- Typical control panel to adjust CD gain:

CD Gain and User Performance

- Tricky to adjust CD gain to optimize user performance
- + Issues:
 - Speed accuracy trade-off (what reduces positioning time tends to increase errors)
 - Opposing relationship between gross and fine positioning times:

Latency

- Latency (aka lag) is the delay between an input action and the corresponding response on a display
- Usually negligible on interactive systems (e.g., cursor positioning, editing)
- + May be "noticeable" in some settings; e.g.,
 - Remote manipulation
 - Internet access (and other "system" response situations)
 - Virtual reality (VR)
- Human performance issues appropriate for empirical research

Property Sensed, Order of Control

- Property sensed
 - Position (graphics tablet, touchpad, touchscreen)
 - Displacement (mouse, joystick)
 - + Force (joystick)
- + Order of control (property of display controlled)
 - Position (of cursor/object)
 - Velocity (of cursor/object)

Joystick

- Two types
 - Isotonic (senses displacement of stick)
 - Isometric (senses force applied to stick)

Isotonic joystick

Isometric joystick

Joystick

- Optimal mappings
 - + Isotonic joystick \rightarrow position control
 - Isometric joystick → velocity control

Natural vs. Learned Relationships

- Natural relationships → spatially congruent
- Learned relationships → spatial transformation (relationship must be learned)

Learned relationship

DOF	Control	Display
х		
У	+	 +
z		
θx		
θу		
θz		

Learned Relationships

- Learned relationships seem natural if they lead to a population stereotype or cultural standard
- A control-display relationship needn't be a spatial relationship...

Learned Relationships

- Learned relationships seem natural if they lead to a population stereotype or cultural standard
- A control-display relationship needn't be a spatial relationship...

Mental Models

- Related terms: physical analogy, metaphor, conceptual models
- Definition: a physical understanding of an interface or interaction technique based on realworld experience
- Scroll pane: slider up, view up ("up-up" is a conceptual model that helps our understanding)
- Desktop metaphor is most common metaphor in computing
- Other commonly exploited real-world experiences:
- + Shopping, driving a car, calendars, painting
- Icon design, in general, strives to foster mental models

Graphics and Paint Applications

 Icons attempt to leverage real-world experiences with painting, drawing, sketching, etc.'

Clock Metaphor

¹ McQueen, C., MacKenzie, I. S., & Zhang, S. X. (1995). An extended study of numeric entry on penbased computers. *Proceedings of Graphics Interface '95*, 215-222, Toronto: Canadian Information Processing Society.

Clock metaphor cont.

hci+d lab.

- + A mode is a functioning arrangement or condition
- Modes are everywhere (and in most cases are unavoidable)
- Office phone light:
 - on = message waiting, off = no messages
- + Computer keyboards have modes
 - * ≈100 keys + SHIFT, CTRL, ALT, CMD → ≈ 800 key variations

- + A mode is a functioning arrangement or condition
- Modes are everywhere (and in most cases are unavoidable)
- Office phone light:
 - on = message waiting, off
- Computer keyboards hav
 - * ≈100 keys + SHIFT, CTRL,
 variations

Q	WE	E	2		۲l	J		Ρ
Α	S	D	F	G	Н	J	К	L
	Z	X	С	V	В	Ν	Μ	$\langle X \rangle$
123				space	9		ret	turn
								Ţ
	Q A 123	Q W E A S 123 ©	QWEF ASD T2X 123	QWER ASDF ZXC 123	Q W E R T Y A S D F G A Z X C V 123 © space	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	QWERTYUIO ASDFGHJK ZXCVBNM 123 © space ref

- + A mode is a functioning arrangement or condition
- Modes are everywhere (and in most cases are unavoidable)
- + Office phone light:
 - on = message waiting, off
- Computer keyboards hav
 - * ≈100 keys + SHIFT, CTRL,
 variations

	오늘		내가		제가	
	ЦЛ		л Ш	‡	H	$\left\ \cdot \right\ $
		0 2	ē 🖵		H	
V	ۍ ۲	EŽ	Ξπ	Т	_	$\langle \times \rangle$
_,	123		간격		÷	J
						Ļ

- + A mode is a functioning arrangement or condition
- Modes are everywhere (and in most cases are unavoidable)
- Office phone light:
 - on = message waiting, off
- Computer keyboards hav
 - * ≈100 keys + SHIFT, CTRL,
 variations

SMILE	YS & F	PEOPL	E						
	e	2.5		R	۲	4	M		
٥	3		Le		0	e	ull li	ړ ۱	
		S	5	Ś	->	ų.		2	
				Y	<u>_</u>		Ŀ	2	
			5	b	4	W	-		0
ABC				í ()		Ŷ	⊤♪ &%		$\langle \times \rangle$
)								ļ
									<u> </u>

Example: F9 Key – Microsoft Word (2010)

- + At least six interpretations, depending on mode:
 - + <u>F9</u> \rightarrow Update selected fields
 - + <u>SHIFT+F9</u> \rightarrow Switch between a field code and its result
 - + <u>CTRL+F9</u> \rightarrow Insert an empty field
 - + <u>CTRL+SHIFT+F9</u> → Unlink a field
 - ALT+F9 → Switch between all field codes and their results
 - <u>ALT+SHIFT+F9</u> → Run GOTOBUTTON or
 MACROBUTTON from the field that displays the field results

Mobile Phone Example

- Navi key (first introduced on Nokia 3210)
- Mode revealed by word above
- At least 15 interpretations: Menu, Select, Answer, Call, End, OK, Options, Assign, Send, Read, Use, View, List, Snooze, Yes

Mode Switching

- PowerPoint: Five view modes
- Switch modes by clicking soft button
- + How to exit Slide Show mode?
 - + PowerPoint \rightarrow ESC
 - + Chrome \rightarrow ?

Mode Switching

- PowerPoint: Five view modes
- Switch modes by clicking soft button
- + How to exit Slide Show mode?
 - + PowerPoint \rightarrow ESC
 - + Chrome \rightarrow ?

Mode Switching

- Sports watch
- Single button cycles through modes

Mode Visibility

- + Shneiderman: "offer information feedback"
 - Shneiderman, B., & Plaisant, C. (2005). Designing the user interface: Strategies for effective human-computer interaction. (4th ed.). New York: Pearson.
- Norman: "make things visible"
 - Norman, D. A. (1988). The design of everyday things. New York: Basic Books.
- unix vi editor: Classic example of no mode visibility:

Modes and Degrees of Freedom

- If control DOF < display DOF, modes are necessary to fully access the display DOF
- Consider a mouse (2 DOF) and a desktop display (3 DOF)
- * x-y control (no problem):

Rotation has issue!

Rotate Mode

- The solution: Rotate mode
- Two approaches
 - Separate rotate mode:

Embedded rotate mode:

(maybe) use with modifier keys

3 DOF Mouse

+ Lots of research (but not commercial products yet)

- 1. Almeida, R., & Cubaud, P. (2006). Supporting 3D window manipulation with a yawing mouse. Proc NordiCHI 2006, 477-480, New York: ACM.
- 2. MacKenzie, I. S., Soukoreff, R. W., & Pal, C. (1997). A two-ball mouse affords three degrees of freedom. Proc CHI '97, 303-304, New York: ACM.
- Hannagan, J., & Regenbrecht, H. (2008). TwistMouse for simultaneous translation and rotation. Tech Report. HCI Group. Information Science Department. University of Otago, Dunedin, New Zeland.

> 2 Degrees of Freedom

- Examples in the HCI research literature
 - 4 DOF Rockin' Mouse¹
 - Three-axis trackball²

- 1. Balakrishnan, R., Baudel, T., Kurtenbach, G., & Fitzmaurice, G. (1997). The Rockin'Mouse: Integral 3D manipulation on a plane. Proc CHI '97, 311-318, New York: ACM.
- 2. Evans, K. B., Tanner, P. P., & Wein, M. (1981). Tablet based valuators that provide one, two, or three degrees of freedom. Computer Graphics, 15(3), 91-97.

Separating the Degrees of Freedom

- More DOF is not necessarily better
- Must consider the context of use
- Etch-A-Sketch: separate 1 DOF x and y controllers:

Wheel Mouse

- Separate DOF via a wheel
- Successful introduction by Microsoft in 1996 with the IntelliMouse

Preceded by...

Adding a Touch Sensor

- 1. Balakrishnan, R., & Patel, P. (1998). The PadMouse: Facilitating selection and spatial positioning for the non-dominant hand. Proc CHI '98 (pp. 9-16): New York: ACM.
- 2.Silfverberg, M., Korhonen, P., & MacKenzie, I. S. (2003). International Patent No. WO 03/021568 A1.
- 3. Villar et al. (2009). Mouse 2.0: Multi-touch meets the mouse. Proc UIST '09, 33-42, New York: ACM.

Adding a Touch Sensor

3. Villar et al. (2009). Mouse 2.0: Multi-touch meets the mouse. Proc UIST '09, 33-42, New York: ACM.

- Touchscreens are the full embodiment of direct manipulation
- + No need for a cursor (cf. indirect input)

Multitouch

hci+d lab.

Accelerometers

- Accelerometers enable tilt or motion as an input primitive
- Technology has matured; now common in mobile devices
- + Many applications; e.g., spatially aware displays:

Interaction Errors

- Discussions above focused on physical properties of controllers and the interactions they enable
- Interaction involves the human (sensors, brain, responders) and the machine
- Interaction errors are unavoidable (and, hence, are akin to an "interaction element")
- We conclude with a look at interaction errors and their consequences

Discard Changes

Default dialogs to quit an application:

Discard Changes

Default dialogs to quit an application:

CAPS LOCK

Some log-in dialogs alert the user if CAPS_LOCK is on...

while others do not...

Focus Uncertainty

 After entering data into a fixed-length field, some interfaces advance focus the next field...

+ while others do not...

Daytime Telephone Number								
Area Code	905	Telephone Number	-					

Next Week: Reading Assignments

- T1: Interaction Design
 - Chapter 4: Social Interaction
 - Chapter 5: Emotional Interaction

Next Week: Reading Assignments

- Nass, C. & Moon, Y. (2000). Machines and mindlessness: Social responses to computers. Journal of Social Issues, 56 (1): 81-103.
- Sproull, L., Subramani, M., Kiesler, S., Walker, J., & Waters, K. (1996). When the Interface Is a Face. Human-Computer Interaction, 11(2), 97-124.
- Lee, J., Jun, S., Forlizzi, J., & Hudson, S. E. (2006). Using kinetic typography to convey emotion in text-based interpersonal communication (ACM, pp. 41–49).
 Presented at the Proceedings of the 6th conference on Designing Interactive systems, New York, NY, ACM.
- Norman, D. (2004). Emotional design: Why we love (or hate) everyday things. New York: Basic Books. Chapter 1

Questions...?